MediaProcessing/pyMetadata/app.py
2023-07-28 23:15:31 +02:00

260 lines
9.4 KiB
Python

import logging
import signal
import sys
import os
from typing import Optional
import uuid
import threading
import json
import time
from kafka import KafkaConsumer, KafkaProducer
from fuzzywuzzy import fuzz
from sources.result import DataResult, Metadata
from sources.anii import metadata as AniiMetadata
from sources.imdb import metadata as ImdbMetadata
from sources.mal import metadata as MalMetadata
from sources.cache import ResultCache
# Konfigurer Kafka-forbindelsen
bootstrap_servers = os.environ.get("KAFKA_BOOTSTRAP_SERVER") or "127.0.0.1:9092"
consumer_group = os.environ.get("KAFKA_CONSUMER_ID") or f"Metadata-{uuid.uuid4()}"
kafka_topic = os.environ.get("KAFKA_TOPIC") or "127.0.0.1:9092"
# Konfigurer logging
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s [%(levelname)s] %(message)s",
handlers=[
logging.StreamHandler(sys.stdout)
]
)
logger = logging.getLogger(__name__)
class ProducerDataValueSchema:
def __init__(self, referenceId, statusType, errorMessage, data):
self.referenceId = referenceId
self.statusType = statusType
self.errorMessage = errorMessage
self.data = data
def to_dict(self):
return {
'referenceId': self.referenceId,
'status': {
'statusType': self.statusType,
'errorMessage': self.errorMessage
},
'data': self.data.to_dict() if self.data else None
}
def to_json(self):
data_dict = self.to_dict()
return json.dumps(data_dict)
@classmethod
def from_dict(cls, data_dict):
referenceId = data_dict.get('referenceId')
statusType = data_dict['status'].get('statusType')
errorMessage = data_dict['status'].get('errorMessage')
data = data_dict.get('data')
return cls(referenceId, statusType, errorMessage, data)
def decode_key(key_bytes):
return key_bytes.decode('utf-8') if key_bytes else None
def decode_value(value_bytes):
return json.loads(value_bytes.decode('utf-8')) if value_bytes else None
# Kafka consumer-klasse
class KafkaConsumerThread(threading.Thread):
def __init__(self, bootstrap_servers, topic, consumer_group):
super().__init__()
self.bootstrap_servers = bootstrap_servers
self.consumer_group = consumer_group
self.topic = topic
self.shutdown = threading.Event()
def run(self):
consumer = KafkaConsumer(
self.topic,
bootstrap_servers=self.bootstrap_servers,
group_id=self.consumer_group,
key_deserializer=lambda x: decode_key(x),
value_deserializer=lambda x: decode_value(x)
)
logger.info("Kafka Consumer started")
while not self.shutdown.is_set():
for message in consumer:
if self.shutdown.is_set():
break
# Sjekk om meldingen har målnøkkelen
if message.key == "request:metadata:obtain" or message.key == "event:reader:received-file":
logger.info("Received message: key=%s, value=%s", message.key, message.value)
# Opprett en ny tråd for å håndtere meldingen
handler_thread = MessageHandlerThread(message)
handler_thread.start()
else:
logger.info("Ignorert message: key=%s", message.key)
# Introduce a small sleep to reduce CPU usage
time.sleep(1)
consumer.close()
logger.info("Kafka Consumer stopped")
def stop(self):
self.shutdown.set()
# Kafka message handler-klasse
class MessageHandlerThread(threading.Thread):
def __init__(self, message):
super().__init__()
self.message = message
def run(self):
logger.info("Handling message: key=%s, value=%s", self.message.key, self.message.value)
# Sjekk om meldingen har en Status
if 'status' in self.message.value:
status_type = self.message.value['status']['statusType']
# Sjekk om statusen er SUCCESS
if status_type == 'SUCCESS':
baseName = self.message.value["data"]["sanitizedName"]
title = self.message.value['data']["title"]
result = self.get_metadata(baseName)
if (result is None):
result = self.get_metadata(title)
producerMessage = self.compose_message(referenceId=self.message.value["referenceId"], result=result)
# Serialiser resultatet til JSON som strenger
result_json = json.dumps(producerMessage.to_dict())
# Send resultatet tilbake ved hjelp av Kafka-producer
producer = KafkaProducer(
bootstrap_servers=bootstrap_servers,
key_serializer=lambda k: k.encode('utf-8') if isinstance(k, str) else None,
value_serializer=lambda v: v.encode('utf-8') if isinstance(v, str) else None
)
producer.send(kafka_topic, key="event:metadata:obtained", value=result_json)
producer.close()
def get_metadata(self, name: str) -> Optional[DataResult]:
logger.info("Checking cache for offloading")
cache_result = ResultCache.get(name)
if cache_result:
logger.info("Cache hit for %s", name)
result = cache_result
else:
logger.info("Not in cache: %s", name)
logger.info("Searching in sources for information about %s", name)
result = self.perform_action(title=name)
if (result.statusType == "SUCCESS"):
logger.info("Storing response for %s in in-memory cache", name)
ResultCache.add(name, result)
def perform_action(self, title) -> DataResult:
anii = AniiMetadata(title)
imdb = ImdbMetadata(title)
mal = MalMetadata(title)
mal_result = mal.lookup()
anii_result = anii.lookup()
imdb_result = imdb.lookup()
# Sammenlign resultater basert på likheter og sammenhenger med tittelen
if anii_result.statusType == "SUCCESS" and imdb_result.statusType == "SUCCESS" and mal_result.statusType == "SUCCESS":
# Begge registrene ga suksessresultater, bruk fuzzy matching for å gjøre en vurdering
title_similarity_anii = fuzz.ratio(title.lower(), anii_result.data.title.lower())
title_similarity_imdb = fuzz.ratio(title.lower(), imdb_result.data.title.lower())
title_similarity_mal = fuzz.ratio(title.lower(), mal_result.data.title.lower())
alt_titles_anii = anii_result.data.altTitle
alt_titles_imdb = imdb_result.data.altTitle
alt_titles_mal = mal_result.data.altTitle
# Sammenlign likheter mellom tittel og registertitler, inkludert alternative titler
if (
title_similarity_anii * 0.8 + sum(fuzz.ratio(title.lower(), alt_title.lower()) for alt_title in alt_titles_anii) * 0.2
< title_similarity_mal * 0.8 + sum(fuzz.ratio(title.lower(), alt_title.lower()) for alt_title in alt_titles_mal) * 0.2
):
most_likely_result = mal_result
elif (
title_similarity_imdb * 0.8 + sum(fuzz.ratio(title.lower(), alt_title.lower()) for alt_title in alt_titles_imdb) * 0.2
> title_similarity_anii * 0.8 + sum(fuzz.ratio(title.lower(), alt_title.lower()) for alt_title in alt_titles_anii) * 0.2
):
most_likely_result = imdb_result
else:
most_likely_result = anii_result
elif anii_result.statusType == "SUCCESS":
# AniList ga suksessresultat, bruk det som det mest sannsynlige
most_likely_result = anii_result
elif imdb_result.statusType == "SUCCESS":
# IMDb ga suksessresultat, bruk det som det mest sannsynlige
most_likely_result = imdb_result
elif mal_result.statusType == "SUCCESS":
# MAL ga suksessresultat, bruk det som det mest sannsynlige
most_likely_result = mal_result
else:
# Ingen resultater, bruk AniList hvis tilgjengelig
most_likely_result = anii_result
# Returner det mest sannsynlige resultatet
return most_likely_result
def compose_message(self, referenceId: str, result: DataResult) -> ProducerDataValueSchema:
return ProducerDataValueSchema(
referenceId=referenceId,
statusType=result.statusType,
errorMessage=result.errorMessage,
data=result.data
)
# Global variabel for å indikere om applikasjonen skal avsluttes
should_stop = False
# Signalhåndteringsfunksjon
def signal_handler(sig, frame):
global should_stop
should_stop = True
# Hovedprogrammet
def main():
# Angi signalhåndterer for å fange opp SIGINT (Ctrl+C)
signal.signal(signal.SIGINT, signal_handler)
# Opprett og start consumer-tråden
consumer_thread = KafkaConsumerThread(bootstrap_servers, kafka_topic, consumer_group)
consumer_thread.start()
logger.info("App started")
# Vent til should_stop er satt til True for å avslutte applikasjonen
while not should_stop:
time.sleep(60)
# Stopp consumer-tråden
consumer_thread.stop()
consumer_thread.join()
logger.info("App stopped")
if __name__ == '__main__':
main()